Distribution Statistics and Random Matrix Formalism of Multicarrier Continuous-Variable Quantum Key Distribution
نویسنده
چکیده
We propose a combined mathematical framework of order statistics and random matrix theory for multicarrier continuous-variable (CV) quantum key distribution (QKD). In a multicarrier CVQKD scheme, the information is granulated into Gaussian subcarrier CVs, and the physical Gaussian link is divided into Gaussian sub-channels. The sub-channels are dedicated to the conveying of the subcarrier CVs. The distribution statistics analysis covers the study of the distribution of the sub-channel transmittance coefficients in the presence of a Gaussian noise and the utilization of the moment generation function (MGF) in the error analysis. We reveal the mathematical formalism of sub-channel selection and formulation of the transmittance coefficients, and show a reduced complexity progressive sub-channel scanning method. We define a random matrix formalism for multicarrier CVQKD to evaluate the statistical properties of the information flowing process. Using random matrix theory, we express the achievable secret key rates and study the efficiency of the AMQD-MQA (adaptive multicarrier quadrature division–multiuser quadrature allocation) multiple-access multicarrier CVQKD. The proposed combined framework is particularly convenient for the characterization of the physical processes of experimental multicarrier CVQKD.
منابع مشابه
Adaptive Quadrature Detection for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the subchannel conditions using a corresponding statistics which...
متن کاملGaussian Quadrature Inference for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the Gaussian quadrature inference (GQI) method for multicarrier continuousvariable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier varia...
متن کاملAdaptive Multicarrier Quadrature Division Modulation for Continuous-Variable Quantum Key Distribution
In a continuous-variable quantum key distribution (CVQKD) system, the information is conveyed by coherent state carriers. The quantum continuous variables are sent through a quantum channel, where the presence of the eavesdropper adds a white Gaussian noise to the transmission. The amount of tolerable noise and loss is a crucial point in CVQKD, since it determines the overall performance of the...
متن کاملSecurity Thresholds of Multicarrier Continuous-Variable Quantum Key Distribution
We prove the secret key rate formulas and derive security threshold parameters of multi-carrier continuous-variable quantum key distribution (CVQKD). In a multicarrierCVQKD scenario, the Gaussian input quantum states of the legal parties are granulatedinto Gaussian subcarrier CVs (continuous-variables). The multicarrier communicationformulates Gaussian sub-channels from the ...
متن کاملSubcarrier Domain of Multicarrier Continuous-Variable Quantum Key Distribution
We propose the subcarrier domain of multicarrier continuous-variable (CV) quantum key distribution (QKD). In a multicarrier CVQKD scheme, the information is granulated into Gaussian subcarrier CVs and the physical Gaussian link is divided into Gaussian subchannels. The sub-channels are dedicated for the conveying of the subcarrier CVs. The angular domain utilizes the phase-space angles of the G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1410.8273 شماره
صفحات -
تاریخ انتشار 2014